Accurate Singular Values of Bidiagonal Matrices

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accurate Singular Values of Bidiagonal Matrices

2 has nonzero entries only on its diagonal and first superdiagonal ) Compute orthogonal matrices P and Q such that Σ = P BQ is diagonal and nonnegat i 2 2 2 T 2 ive. The diagonal entries σ of Σ are the singular values of A . We will take them to be sorted in decreasing order: σ ≥ σ . The columns of Q= Q Q are the right singular vec i i + 1 1 2 t 1 2 ors, and the columns of P= P P are the left s...

متن کامل

Accurately Counting Singular Values of Bidiagonal Matrices

We have developed algorithms to count singular values of a bidiagonalmatrix which are greater than a speci ed value This requires the transformation of the singular value problem to an equivalent symmetric eigenvalue problem The counting of sin gular values is paramount in the design of bisection and multisection type algorithms for computing singular values on serial and parallel machines The ...

متن کامل

Singular values of convex functions of matrices

‎Let $A_{i},B_{i},X_{i},i=1,dots,m,$ be $n$-by-$n$ matrices such that $‎sum_{i=1}^{m}leftvert A_{i}rightvert ^{2}$ and $‎sum_{i=1}^{m}leftvert B_{i}rightvert ^{2}$  are nonzero matrices and each $X_{i}$ is‎ ‎positive semidefinite‎. ‎It is shown that if $f$ is a nonnegative increasing ‎convex function on $left[ 0,infty right) $ satisfying $fleft( 0right)‎ ‎=0 $‎, ‎then  $$‎2s_{j}left( fleft( fra...

متن کامل

Accurate computation of singular values and eigenvalues of symmetric matrices ∗

We give the review of recent results in relative perturbation theory for eigenvalue and singular value problems and highly accurate algorithms which compute eigenvalues and singular values to the highest possible relative accuracy.

متن کامل

An Eecient and Accurate Parallel Algorithm for the Singular Value Problem of Bidiagonal Matrices ?

In this paper we propose an algorithm based on Laguerre's iteration, rank two divide-and-conquer technique and a hybrid strategy for computing singular values of bidiagonal matrices. The algorithm is fully parallel in nature and evaluates singular values to tiny relative error if necessary. It is competitive with QR algorithm in serial mode in speed and advantageous in computing partial singula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Scientific and Statistical Computing

سال: 1990

ISSN: 0196-5204,2168-3417

DOI: 10.1137/0911052